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Abstract

Measurement specialist routinely assume examinee responses to test are indepen-
dent of one another. However, previous research has shown that many tests contain
item dependencies, and not accounting for these dependencies leads to misleading
estimates of item and person parameters. In this paper, the marginal maximum
likelihood estimation in Rasch model with the violation of the local independence
is studied where the integrals are approximated by Gauss-Hermite quadrature. The
power of the Wald test on the group effect parameter of the latent traits in cross-
sectional studies is examined under the local independence and the local item de-
pendence. The different results are illustrated with a simulation study.

Key words: Gauss-Hermite quadrature; Group effect parameter; local
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1 Introduction

Patient Reported Outcomes (PRO) such as quality of life and other perceived
health measures (pain, fatigue, stress,...) are increasingly used as important
health outcomes in clinical trials or in epidemiological studies. They cannot
be directly observed nor measured as other clinical or biological data and they
are often collected through questionnaires with binary or polytomous items.
Item response theory (IRT) models enable to model relationship between ob-
served and latent variables where the probability of answering to each item is
modelled as a function of the latent variable and item parameters. Two main
statistical approaches can be used to analyze PRO data: classical test theory
(CTT) based on observed scores and IRT models. The Rasch model (Rasch,
1960; Fischer and Molenaar, 1995) is the most well known used for binary
responses.

Local independence of items is an assumption in Rasch model and all IRT

Preprint submitted to Elsevier 24 June 2013



models, that is, the item in a test should not be related to each other. Mod-
els of modern test theory imply statistical independence among responses,
generally referred to as local independence. Marais and Andrich (Marais and
Andrich, 2008; Christensen et al., 2013) pointed out that local independence
in IRT models can be violated in two ways that are difficult to distinguish em-
pirically and are not distinguished clearly in the literature. They distinguish
between a violation of unidimensionality, which is called trait dependence,
and a specific violation of statistical independence, which is called response
dependence, both of which violate local independence. In this paper, we focus
only on the response dependence and we call it local item dependence.

One violation of local independence occurs when the response to one item
governs the response to a subsequent item. An example of local item depen-
dence is the physical functioning subscale of the SF-36 questionnaire (Leplège
et al., 2001). The items climbing one flight of stairs and climbing several flights
of stairs are dependent. Similarly, the items walking one block, walking sev-
eral blocks and walking more than a mile are dependent in this way. Kreiner
and Christensen (2007) showed in both cases that these items are local item
dependent.

Two separate statistical analyses of the data which are simulated with varying
degrees of local dependence, are developed in this paper. The first uses the
classical Rasch model where it is assumed that all items are statistically inde-
pendent. In the second analysis, we use the model which takes into account
the local item dependence. Hence, the local independence is not violated in
the first analysis and violated in the second analysis.

The first aim of this paper is to investigate the effects of the violation of the
assumption of local independence on the difficulty and person parameters of
the Rasch model. We expect that in the data with local item dependence, the
bias and the standard deviation of all the estimates will be better to those
obtained under the local independence.

Statistics literature in the social, behavioral, and biomedical sciences typically
stress the importance of power analysis. By definition, the power of a statistical
test is the probability that its null hypothesis (H0) will be rejected given that
it is in fact false. Obviously, significance tests that lack statistical power are of
limited use because they cannot reliably discriminate between the credibility
of the H0 assumption and its non rejection due to a lack of power. For cross-
sectional studies comparing two groups, Hardouin et al. (2012) proposed the
Raschpower procedure for the Rasch model to evaluate the power of the test of
group effect. The power for detecting a prespecified group effect is determined
for a given sample size, inter individual variability (variance of the latent trait)
at level α (Julious, 2009; Chow, 2011).
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The second aim of this paper is to evaluate the robustness of the Raschpower
procedure against the violation of the local independence. Glas and Hendrawan
(2005) showed that the introduction of a violation of local independence only
leads to an inflation of the power in the condition where the violation is only
applied for one treatment group.

The outline of the paper is as follows. Section 2 presents the dichotomous
Rasch model with local item dependence. Then the marginal maximum like-
lihood estimation of all the parameters is illustrated by simulation study in
Section 3. Section 4 is devoted to the Raschpower procedure under the two
statistical analyses which are illustrated by a simulation studies. We finally
conclude in Section 5.

2 The model

The Rasch model with local item dependence is defined as follows:

Let X = (Xij), i = 1, . . . , N ; j = 1, . . . , J the matrix of binary variables with
density distribution defined by:

P (Xij = xij | δj , θi) =
exp(xij(θi − δj))

1 + exp(θi − δj)
, (1)

where δ = (δ1, . . . , δJ) is the item difficulty parameters, θ1, . . . , θN are the
latent traits supposed independent and identically distributed as a normal
with mean µ and variance σ2.

The local item dependence occurs when a person’s response to an item depends
on the response to a previous item. It is formalised by making a person’s
response on an item be a function of the person’s response to a previous item.
Let (j1, j2) a pair of items. The dependence between the response on item j2
and the response on item j1 is modeled by the introduction of a parameter d,
d ∈ R. Their conditional distribution is given by

P (Xij2 = xij2 | Xij1 = xij1 , δj2, d, θi) =
exp(xij2(θi − δj2 + dxij1))

1 + exp(θi − δj2 + dxij1)
. (2)

The parameter d represents the magnitude of dependence between the two
items.

We note that these two items are dependents and the number of pairs of
items dependent could be greater than one. Let (j3, j4) an another pair of
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items dependent with conditional distribution given by

P (Xij4 = xij4 | Xij3 = xij3 , δj4, d, θi) =
exp(xij4(θi − δj4 + dxij3))

1 + exp(θi − δj4 + dxij3)
. (3)

The response variables to items which are different from j1, j2, j3 and j4 are
independent conditionally on the latent traits.

The model defined by Eqs (1)-(3) is the Rasch model with local item depen-
dence. Note that if d = 0, all the response variables to items are conditionally
independent, so the classical Rasch model holds.

This model as defined is not identifiable. So, the classical identifiability con-
straint we made on the parameters is

∑J
j=1 βj = 0.

The main goal is the estimation of the difficulty parameters δ, the person
parameters µ and σ, and the parameter d.

Conditionally on the latent trait θi, the joint probability of the variable Xi =
(Xi1, . . . , XiJ) for the model defined by Eqs (1)-(3) is given as follows:

P (Xi1 = xi1, . . . , XiJ = xiJ | δ, d, θi) =
∏

k 6=j2,j4

P (Xik = xik | δk, θi)

×P (Xij2 = xij2 | Xij1 = xij1 , δj2, d, θi)

×P (Xij4 = xij4 | Xij3 = xij3 , δj4, d, θi).

(4)

Hence, we deduce the marginal probability of the vector Xi as follows

P (Xi1 = xi1, . . . , XiJ = xiJ) =
∫

R
P (Xi1 = xi1, . . . , XiJ = xiJ | δ, d, θi) ϕ(θi) dθi,

(5)

where ϕ(.) is the density function of the latent trait θi.

And the marginal likelihood for the defined model is given by:

L(δ, µ, σ, d | x) =
N
∏

i=1

P (Xi1 = xi1, . . . , XiJ = xiJ). (6)

The integral involved in this marginal likelihood is approximated by Gauss-
Hermite quadrature.
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3 Simulation study

The marginal maximum likelihood estimation of the model defined above is
illustrated by a simulation study where the data are simulated under the local
item dependence. Then we compare the estimates of the proposed model to
those obtained under the local independence. The different parameters con-
sidered in this study are fixed as follows:

• N = 100, 300 and 500
• J = 5 and δ = (−2,−1, 0, 1, 2)
• µ = 0.2, σ = 1
• pairs of dependent items : (1, 3) and (2, 4)
• d = 0, 0.2, 0.5 and 1

The different estimates and their standard deviations which are based on 1000
datasets are given in the Tables 1-4, respectively for d = 0, 0.2, 0.5 and 1.
We denote by Ind. the model with local independence and by Dep. the model
with local item dependence.

Table 1 with d = 0, where the two models are equivalent, shows that all
the estimates are unbiased for the three sample sizes considered. We note as
expected that their standard deviations decrease as N increases.

For d = 0.2, Table 2 shows that the bias of all the estimates for the model
with local independence are greater to those of the model with local item
dependence. In fact, for N = 100, the largest bias is for δ1 which is equal
to 0.121 under the model with local independence and equal to 0.055 under
the model with local item dependence. For N = 300, this bias is equal to
0.094 under the model with local independence and equal to 0.022 under the
model with local item dependence. For both models, we note that the bias
and the standard deviations are decreasing when N increases. The estimate of
the parameter d is unbiased under the model with local item dependence and
its standard deviation decreases as N increases. We conclude that this small
value of d affect the bias of all the estimates when the local independence is
violated.

With d = 0.5, Table 3 shows clearly that for the three values of N , the esti-
mates of almost all the parameters are biased under the local independence
and unbiased under the model which takes into account the local item depen-
dence. We note also that the standard deviations decrease when N increases.

Table 4 shows that for d = 1 the estimates are strongly biased for the model
with local independence and unbiased for the model with local item depen-
dence. The estimate of the parameter d is better when N increases. We note
as expected that for all the cases, the standard deviations decrease when N
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Table 1
Paramer estimates and their standard deviations in parentheses for d=0.

N=100 N=300 N=500

parameter Ind. Dep. Ind. Dep. Ind. Dep.

δ1 -2.041(.295) -2.057(.362) -2.016(.164) -2.022(.203) -2.010(.126) -2.009(.152)

δ2 -0.999(.239) -1.007(.258) -1.007(.135) -1.010(.145) -0.999(.101) -0.998(.108)

δ3 -0.004(.207) 0.001(.218) 0.001(.122) 0.003(.127) 0.001(.093) 0.000(.096)

δ4 1.017(.223) 1.025(.246) 1.009(.130) 1.012(.143) 1.003(.095) 1.002(.104)

δ5 2.027(.274) 2.038(.306) 2.013(.161) 2.017(.179) 2.006(.124) 2.005(.135)

µ 0.204(.152) 0.209(.169) 0.203(.088) 0.205(.098) 0.201(.067) 0.201(.073)

σ 0.991(.206) 0.999(.236) 1.004(.121) 1.007(.139) 1.002(.089) 1.002(.099)

d * -0.013(.498) * -0.006(.285) * 0.009 (.214)

Table 2
Paramer estimates and their standard deviations in parentheses for d=0.2.

N=100 N=300 N=500

parameter Ind. Dep. Ind. Dep. Ind. Dep.

δ1 -2.121(.308) -2.055(.370) -2.094(.170) -2.022(.206) -2.086(.131) -2.009(.153)

δ2 -1.041(.241) -1.008(.263) -1.045(.138) -1.009(.147) -1.038(.103) -0.999(.110)

δ3 0.024(.208) 0.001(.218) 0.028(.123) 0.003(.128) 0.027(.093) 0.000(.096)

δ4 1.058(.226) 1.025(.246) 1.048(.131) 1.012(.143) 1.041(.097) 1.002(.104)

δ5 2.080(.280) 2.038(.309) 2.063(.165) 2.017(.180) 2.055(.127) 2.005(.135)

µ 0.235(.158) 0.209(.170) 0.232(.090) 0.205(.099) 0.230(.069) 0.201(.073)

σ 1.034(.208) 0.996(.243) 1.044(.123) 1.006(.140) 1.043(.091) 1.002(.100)

d * 0.207(.519) * 0.201(.294) * 0.209 (.216)

increases.

From this simulation study, we can conclude that when the parameter d in-
creases, the bias of the parameter estimates increases under the model with
local independence and remains negligible under the model with local item
dependence.
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Table 3
Paramer estimates and their standard deviations in parentheses for d=0.5.

N=100 N=300 N=500

parameter Ind. Dep. Ind. Dep. Ind. Dep.

δ1 -2.223(.320) -2.054(.377) -2.195(.178) -2.020(.209) -2.188(.136) -2.008(.157)

δ2 -1.095(.245) -1.012(.266) -1.099(.142) -1.011(.151) -1.089(.104) -0.999(.110)

δ3 0.060(.210) 0.001(.219) 0.063(.125) 0.002(.127) 0.062(.094) 0.000(.096)

δ4 1.111(.229) 1.026(.248) 1.100(.135) 1.012(.144) 1.093(.098) 1.002(.105)

δ5 2.148(.293) 2.039(.311) 2.130(.170) 2.017(.179) 2.122(.131) 2.005(.136)

µ 0.273(.165) 0.209(.171) 0.270(.093) 0.205(.099) 0.268(.072) 0.201(.073)

σ 1.090(.215) 0.998(.247) 1.098(.127) 1.006(.141) 1.096(.094) 1.001(.101)

d * 0.527(.671) * 0.503(.306) * 0.513 (.236)

Table 4
Paramer estimates and their standard deviations in parentheses for d=1.

N=100 N=300 N=500

parameter Ind. Dep. Ind. Dep. Ind. Dep.

δ1 -2.367(.337) -2.051(.389) -2.343(.184) -2.024(.216) -2.328(.144) -2.008(.164)

δ2 -1.171(.251) -1.013(.273) -1.170(.146) -1.009(.156) -1.160(.107) -0.998(.113)

δ3 0.110(.213) 0.000(.220) 0.113(.125) 0.003(.127) 0.110(.095) 0.000(.097)

δ4 1.185(.233) 1.025(.249) 1.174(.136) 1.013(.145) 1.164(.100) 1.002(.106)

δ5 2.243(.304) 2.038(.314) 2.225(.177) 2.018(.180) 2.212(.135) 2.004(.136)

µ 0.327(.173) 0.209(.172) 0.324(.098) 0.205(.100) 0.320(.075) 0.201(.074)

σ 1.163(.224) 0.996(.252) 1.173(.131) 1.006(.143) 1.167(.096) 1.000(.103)

d * 1.119(.941) * 1.024(.350) * 1.016 (.261)
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4 Model with two groups of patients

4.1 The model

We plan to conduct a cross-sectional study for the comparison of two groups
of patients. Let N1 and N2 be the sample sizes in each group. Let θ1 and θ2

be the latent traits in the first (coded 1) and in the second group (coded 2)
with normal distributions respectively given by N(−γ/2, σ2) and N(γ/2, σ2).
In this case, γ represents the difference between the mean values of the latent
trait in the two groups.

We are interested in the comparison of the two hypotheses: H0 : γ = 0 vs
H1 : γ 6= 0.

During the planning phase of the study, the values of the parameters are
assumed as fixed to some hypothesis values, so it is possible to consider that
the parameters δ, σ and d as known. Hence the marginal likelihood for the
parameter γ is given by:

L(γ | δ, σ, d, x) =
2
∏

g=1

Ng
∏

i=1

P (Xi1 = xi1, . . . , XiJ = xiJ) (7)

where P (Xi1 = xi1, . . . , XiJ = xiJ) is the marginal probability given by equa-
tion (5), with θi replaced by θ1i in the first group and by θ2i in the second
group.

During the plannification step, the patient’s responses are always unknown,
so we need to determine a set of expected responses, conditionally on all
the parameters fixed to their expected values. Let X = (x(p)) the matrix of

dimension 2J × J , where x(p) = (x
(p)
1 , . . . , x

(p)
J ), x

(p)
j = 0, 1; j = 1, . . . , J is the

pth binary response pattern associated to the model defined in Section 2. Let
πpg the probability of x(p) in the group g (g = 1, 2), which is given by:

πpg =
∫

R
P (X

(p)
i1 = x

(p)
i1 , . . . , X

(p)
iJ = x

(p)
iJ | δ, d, θgi ) ϕ(θgi ) dθgi . (8)

The expected frequencies npg of each pattern p in each group g is then deter-
mined in the following way:

First we evaluate n⋆
pg = floor(Ng × πpg) with floor(x) = n if n ≤ x < n + 1,

where n is an integer. Then we calculate the number of unaffected frequencies
N⋆

g = Ng −
∑

p n
⋆
pg and thereafter we compute the residual probabilities π⋆

pg =
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πpg − n⋆
pg/Ng. Then the unaffected frequencies are distributed among all the

N⋆
g patterns having the greatest values of the residual probabilities π⋆

pg, where
we add 1 to the frequency. Thus npg = n⋆

pg +1 for these unaffected frequencies
and npg = n⋆

pg for the others. Hence we construct the expected sample with
size Ng, where each pattern p is repeated npg times (p = 1, . . . , 2J).

4.2 Power of the Wald test

This difference between means γ can be tested by the Wald test (see Green-
land, 1983; Hardouin et al., 2012). We assume the case of typical null hypoth-
esis that implies that there is no difference between means for the two groups.
This test is performed on the two hypotheses: H0 : γ = 0 and H1 : γ 6= 0,
and the statistic test defined by γ√

V ar(γ)
, where V ar(γ) is the variance of γ.

The null hypothesis is rejected at level α if |γ̂|√
V ar(γ̂)

> z1−α/2, where z1−α/2 is

the quantile of the cumulative standard normal distribution function, and γ̂
and V ar(γ̂) are respectively the estimate of γ and its variance. The expected
power of this test which is based on the Cramer-Rao bound is evaluated as
follows:

1− β̂CR = 1− Φ



z1−α/2 −
γ̂

√

V ar(γ̂)



+ Φ



−z1−α/2 −
γ̂

√

V ar(γ̂)



 , (9)

where Φ(.) is the cumulative standard normal distribution function.

Assuming γ > 0, the second part of the right hand side of this equation is
close to 0, thus this power is approximated as follows:

1− β̂CR ≃ 1− Φ



z1−α/2 −
γ

√

V ar(γ̂)



 . (10)

We point out that for d = 0, this method is the Raschpower procedure defined
by Hardouin et al. (2012).

4.3 Estimation of the power using simulation

The estimation of the parameter γ using simulated data is obtained by the
maximization of the marginal likelihood given by (7), where the integral is
approximated by Gauss-Hermite quadrature using fifteen points. The estimate
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of its variance is obtained, then we deduce the significance of the Wald test
under H1 for this dataset. Hence, the power estimate denoted by 1−βS is the
rate of significant Wald tests under H1 over the M simulated datasets. This
approach is compared to the proposed one described above.

4.4 Illustration

In this section, we compare under the two models the power of the Wald
test 1 − β̂CR obtained by the proposed approach to 1 − βS, the one obtained
by a simulation method which is based on 1000 datasets. The parameters
considered in this study are given as follows:

• N1 = N2 = 50, 100, 200, 300 and 500
• J = 5 and δ = (−2,−1, 0, 1, 2)
• γ = 0.2, 0.5 and 0.8, σ = 1
• pairs of dependent items: (1, 3) and (2, 4)
• d = 0, 0.2, 0.5 and 1

We denote by Ind. the model with local independence and by Dep. the model
which takes into account the local item dependence.

We note that for all the cases considered in this study, these two powers are
increasing with Ng and γ.

For d = 0, where the two models are equivalent, Table 5 shows that the two
powers are similar. In fact, the largest difference between the two powers is
equal to 0.064, which corresponds to Ng = 300 (g = 1, 2) and γ = 0.2. With
d = 0.2, Table 6 shows that the two powers for each model are close to each
other. The power 1 − βS obtained by simulation under the model with local
independence is very close to the one obtained by the model under local item
dependence. In fact, the largest difference is equal to 0.007 which corresponds
to Ng = 500 and γ = 0.2. The powers 1− β̂CR obtained by the two models are
also close to each other. Indeed, except the case with Ng = 500 and γ = 0.2,
where the difference between the two powers is equal to 0.101, in all other
cases the difference between the powers is very small.

With d = 0.5, Table 7 shows that the two powers obtained under each model
are comparable and very close. In fact, except the case with Ng = 500 and
γ = 0.2 where the difference is equal to 0.139 for the Ind. model and equal to
0.078 for the Dep. model, all other cases has small difference between the two
powers. The powers calculated under the Ind. model are very close to those
calculated under the model with local item dependence. Table 8 with d = 1,
shows the same results as in the previous case. The largest difference is for
1 − β̂CR under the two models which is equal to 0.124 and corresponding to
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Table 5
Power estimates for the two models with d=0.

N1 = N2 γ 1− βS 1− β̂CR

50 0.2 0.090 0.096

0.5 0.361 0.381

0.8 0.778 0.754

100 0.2 0.146 0.149

0.5 0.646 0.645

0.8 0.967 0.963

200 0.2 0.300 0.289

0.5 0.909 0.914

0.8 1.000 1.000

300 0.2 0.368 0.304

0.5 0.985 0.981

0.8 1.000 1.000

500 0.2 0.564 0.592

0.5 0.999 1.000

0.8 1.000 1.000

Ng = 300 and γ = 0.2. For the other cases, the powers are very close either in
each model or when we compare the two models.

When the violation is applied to two groups of patients, the power of the
group effect is similar to the analogous value found in the simulations without
a model violation. From this study, we can say that the violation of the local
independence didn’t affect the power of the Wald test for the group effect.
Hence, the Raschpower procedure is robust against the violation of the local
independence using two pairs of items dependent.
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Table 6
Power estimates for the two models with d=0.2.

Ind. Dep.

N1 = N2 γ 1− βS 1− β̂CR 1− βS 1− β̂CR

50 0.2 0.087 0.098 0.088 0.096

0.5 0.362 0.382 0.362 0.380

0.8 0.776 0.754 0.776 0.752

100 0.2 0.154 0.159 0.153 0.154

0.5 0.651 0.652 0.650 0.648

0.8 0.964 0.964 0.965 0.962

200 0.2 0.302 0.259 0.303 0.229

0.5 0.908 0.913 0.909 0.908

0.8 1.000 1.000 1.000 0.999

300 0.2 0.367 0.355 0.364 0.431

0.5 0.983 0.983 0.982 0.980

0.8 1.000 1.000 1.000 1.000

500 0.2 0.554 0.448 0.547 0.549

0.5 0.999 1.000 1.000 0.999

0.8 1.000 1.000 1.000 1.000
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Table 7
Power estimates for the two models with d=0.5.

Ind. Dep.

N1 = N2 γ 1− βS 1− β̂CR 1− βS 1− β̂CR

50 0.2 0.092 0.097 0.092 0.097

0.5 0.364 0.379 0.360 0.378

0.8 0.780 0.753 0.775 0.747

100 0.2 0.153 0.169 0.150 0.153

0.5 0.645 0.652 0.643 0.642

0.8 0.961 0.963 0.961 0.960

200 0.2 0.295 0.278 0.290 0.246

0.5 0.904 0.914 0.900 0.908

0.8 1.000 0.999 1.000 0.999

300 0.2 0.364 0.395 0.353 0.373

0.5 0.983 0.983 0.982 0.981

0.8 1.000 1.000 1.000 1.000

500 0.2 0.550 0.689 0.549 0.627

0.5 1.000 0.999 1.000 0.999

0.8 1.000 1.000 1.000 1.000
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Table 8
Power estimates for the two models with d=1.

Ind. Dep.

N1 = N2 γ 1− βS 1− β̂CR 1− βS 1− β̂CR

50 0.2 0.090 0.096 0.088 0.096

0.5 0.364 0.381 0.356 0.372

0.8 0.774 0.754 0.764 0.741

100 0.2 0.159 0.150 0.148 0.146

0.5 0.633 0.649 0.631 0.637

0.8 0.959 0.963 0.959 0.958

200 0.2 0.305 0.251 0.294 0.244

0.5 0.898 0.913 0.896 0.904

0.8 1.000 0.999 1.000 0.999

300 0.2 0.358 0.439 0.347 0.315

0.5 0.978 0.981 0.976 0.978

0.8 1.000 1.000 1.000 1.000

500 0.2 0.548 0.582 0.542 0.582

0.5 1.000 0.999 0.999 0.999

0.8 1.000 1.000 1.000 1.000
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5 Conclusions

In this paper local item dependence is formalised algebraically, data are sim-
ulated with varying degrees of dependence according to this formulation, and
then analysed according to the Rasch model assuming violations and no vio-
lations. The simulation study showed that the model which takes into account
the local item dependence provides better estimates for all the parameters
than the one wich assumes the local independence.

The Raschpower procedure was initially developped for dichotomous items
in cross-sectional studies. It allowed estimating the power of Wald test to
compare the difference of the means of two group of patients on a latent
variable measured by a Rasch model. The approach consists in defining a
planning dataset built from the probability to observe each response pattern
using Gauss-Hermite quadrature. From this dataset, the difference between
the means of the two groups is estimated with its variance, and the power of
the test is then evaluated.

In this paper, this approach is adapted to the model which takes into account
the local item dependence. Then the power of the test is evaluated under two
analyses: the model with local independence and the model with local item
dependence. In each analysis, this power is then compared to the one obtained
by simulations.

A second remark concerns the robustness studies presented here. The simula-
tion study showed that the power of the Wald test on the group effect remains
stable when the local independence is violated compared to the one which
assumes the local independence. Hence, we can conclude that the Raschpower
procedure is robust against the violation of the local independence.

Above, the proposed approach was outlined in detail and investigated in sim-
ulation studies for the local item dependence to the Rasch model with binary
data. However, the approach can be easily generalised in two directions. First,
polytomous PRO data by using the Partial credit model defined by Master
(1982). Second, the longitudinal Rasch model in longitudinal PRO binary data
framework.
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