SELECTION OF ITEMS FITTING A RASCH MODEL

ABSTRACT

In a preceeding paper, the authors propose a procedure tasled Multidimen-
sional Marginaly Sufficient Rasch Model (MMSRM) to sele@nits in scales with
good measurement properties. The main drawback of thisedtoe is the time of
computing, because the used models are Generalized Linzad Models (GLLM),
a kind of models which the parameters are long to estimate elissical methods
in the generalist statistical software. In this paper, wappse a fast way to realize
this procedure. A Stata module is proposed to perform thevievsions of this pro-
cedure. Simulations allows comparing this procedure to t¢tters ones, MSP and
HCA/CCPROX.

Key Words : Quality of life, Multidimensional IRT, Rasch model, Itemslaction,
Raschfit.

0.1. Introduction

Item Response Models (IRM) [FIS 95] [LIN 97] are used modalgducational
testing, psychology or health related quality of life. Th@sodels consider that a la-
tent trait (latent variable) explains the responses tottdras. The latent trait generally
is multidimensional, but full of IRM generally consider grd unidimensional latent
trait. More, the relations between the items and the comptasfehe latent trait often
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are unknown : they are supposed by subjective advices oftaxged the work of the
statistician consists to validate them with psychometrideis. The statistician gene-
rally is not integrated in the exploratory analysis to defimese links and to help the
experts to define links which are coherent with psychometdperties.

Some procedures (Factor analysis, MSP, HCA/CCPROX) alanihks between
the items and the latent traits to be defined, but none of tiselbbased on the direct
fit of an Item Response Models to the data. The authors propdsR 04] a pro-
cedure which allows defining these links and obtaining scalih a good fit of a
given Item Response Model : the Multidimensional Marginabyfficient Rasch Mo-
del (MMSRM) which is a multidimensional counterpart of theshfamous IRM, the
Rasch model.

But the fit of a multidimensional IRM, evaluated by the likedbd of the model,
is a long process to run if we consider the model as a Multidsienal Generalized
Linear Mixed Model (GLMM) : in this paper, a fast way to reaithis procedure is
proposed. It allows obtaining correct results in a reastentine.

0.2. Notations and assumptions
0.2.1. Notations

Let ©, the gth component of the multidimensional latent trait chardzieg the
individuals withg = 1,...,@ and#§,, the realization of this latent trait for theth
individual,n = 1, ..., N. 8,, is the vector of the values on tlig latent traits for the
nth individual (6,1, ..., Ong, -, OnQ)-

The jth item is characterized by a vector of parametersj = 1, ..., J [FIS 95].
The response to this item is represented by the random acgbwich the realiza-
tion for thenth individual is notedr,, ;.

We consider only dichotomous items, and for each of themptbee favourable
answer is named "positive response" and is codedd the other answer is named
"negative response” and is codéd

The Item Response Function (IRF) of tlih item is the probability that a given
individual n positively respond to this item as a function of the valueheflatent trait
for thenth individual9,,.
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0.2.2. Fundamental assumptions of the Item Response Theory (IRT)

The IRT is the set of IRM which verify three fundamental asptions [LIN 97] :

— Fixed dimension : the dimensidp of the latent trait is known. For the majority
of IRM, the unidimensionality@ = 1) is required.

— Local independency : the responses to the items are indepeconditionnally
to the latent trait.

— Monotonicity : the IRF are non-decreasing functions ofree@mponent of the
latent trait.

0.3. The Rasch model and the multidimensional marginally sfficient Rasch mo-
del

0.3.1. The Rasch model

The Rasch model [RAS 60] is an unidimensional IRM : the respsrto the items
are assumed to depend of an unidimensional latent tfgjtis a scalar. More, each
itemyj, j =1,...,J, is defined by only one parametgr: this parameter is interpreted
as the difficulty of thejth item, because the more its value is high, the more the
probability to positively respond to the itejris small. The IRF of thgth item is :

€XP (Tnyj 0, —9;
P(Xnj = xnj[0n; 65) = 1+(eXIJ) EH — 5{;) [1]
n — 0j

The latent trait can be considered as a set of fixed paran@tassa random va-
riable. In the fixed effects Rasch model, the classical marintikelihood technic
makes the estimations not consistent.

The Rasch model is a famous IRM because this model has a spetifierty :
the scoreS,, = Z'j]:l X, is a sufficient statistic of the latent trait, that is to sagtth
all the available information about the latent trait is @néd in the score [AND 77].
Consequently, if the latent trait is considered as a set efifparameters, the condi-
tional maximum likelihood can be used : the likelihood is ingixed conditionnally
to the score computed as the number of positive responséksthe dtems for each
individual. These estimations are consistent [AND 70].

If the latent trait is considered as a random variable, ggidution functionG ()
is assumed (generally as a centered gaussian distribdti@miances? [FIS 95]), and
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consistent estimations of the items parameterand of the parameters of this distri-
bution (generally, only the variane€?) can be obtained by maximizing the marginal
likelihood :

N J

w0, 6/z) = [ / [T P(Xoj = 203 /0:6,)G(0/0%)d0 2]

n=1 j=1

With § = (61, ..., 65, ..., 8,).

0.3.2. The multidimensional marginally sufficient Rasch model

Hardouin and Mesbah [HAR 04] propose a extention of the Rasotiel to the
multidimensional case. In this model, the responses totémsi are governed by a
multidimensional latent trait (of dimensiap), but the response to a given iteiis
governed by only one component of the latent trait indexe@onsequently, margi-
nally to the others items and to the others components oftieeat trait, all the items
governed by the same component of the latent trait (that sayoeach scale) fit a
classical Rasch model. This model can be relied to the betwtems response model
defined by Adams and al. [ADA 97].

In this model, the response function of tfth item is :

exp (Jf'nj (0"(]]‘ - 5]))
1+ exp (Ong, — 0;)

P(Xpj = n;/0n;0;) = = P(Xpnj = T3;/0ng;:6;)[3]

As a consequence, the scdfg, = E i=1/a,=q Tnj computed with only the items
associated to thgth component of the Iatent traﬁi is a sufficient statistic 0®,.

This model is named a Multidimensional Marginaly SufficiBatsch Model (MM-
SRM) for this reason. By considering the latent trait as ativariate random variable
(distributed by a multivariated centered gaussian distidim with a unknown cova-
riance matrixX), the items parameters (and the elements of3¥hmatrix) can be
consistently estimated by marginal maximum likelihood ptgximizing :

Ly (,6/x) = H/HP nj = Tnj/04,:0;)G(0/%)d0 [4]

n=1
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This method of estimation is a long process with classiciihsoe as SAS, Splus
or Stata, because these integrals must be approximatedhasteg of the algorithm.

We can gain full of time by estimating independently the gmarameters and the
elements of th&Z matrix : like each marginal scale verifies a Rasch model,tdras
parameters can be estimated scale by scale, by the maximugmalddikelihood me-
thod. These estimations are notgd;j = 1, ..., J.

Then, the elements of the covariance malixan be estimated by assuming the
items parameters as known parameters and by maximizingetheuantity :

n=1

N J
Laa(2/z,0) = || / [ P(Xn; = 20 /04,:0,)G(0/%)d6 [5]
j=1
which is an approximation af ;1 (X, d/x).

0.4. The Raschfit procedure

In [HAR 04], a procedure of items selection in Rasch scalegtan the fit of the
items to a MMSRM is proposed. This procedure is referencealdampresent paper by
"Raschfit".

At a stepk of this procedure, we assume at each step to have a sétotems,
named kernel, which verifies a Rasch model, and we searchakatRmodel fits the
data by adding a new item (indexed hy= 0) to the kernel. We compare the fit of
a Rasch model, and the fit of the MMSRM with the items of the &kralied to one
component of the latent trait and the new item relied to agratbmponent.

At the first step of the Raschfit procedure, the initial keis@lomposed of two or
more items chosen by the user, or determined by a specifigsasial he order in wich
the others items will be introduced in the procedure can éelyrdetermined but can
be have importance in the final result. The authors propossddhe Mokken Scale
Procedure (MSP) [HEM 95] to select the initial kernel anditdes the others items

The fit of the models is valuated by the Akaike Informatiornt€ion (AIC) [HOI 97]
with :

AIC,, = =2, + 2K, [6]
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Wherel,, is the value of the log-likelihood anH’,,, the number of parameters of
the modeln. At the kth step of the procedure, we haﬁék) = J®) 42 for the Rasch
model andk{"” = J*) 1 4 for the MMSRM.

The new item is selected at théh step of the procedure in the scaleﬁlifC’f’“) <
AICék'). The procedure is stopped when there is no more item rengginin

This procedure is a very long process, because the logHdal of a MMSRM is
long to approximate. The estimation can be implementedtélGLLAMM program
of Stata, the NLMIXED procedure of SAS or the NLME library obl8s. This three
programs approximate the multivariate integrals with fdista) gaussian quadratures
and necessitate a great amount of computer ressources.

0.5. A fast version of Raschfit

We propose here an adaptation of the Raschfit procedureenetd as "Raschfit-
Fast". This adaptation is based on the fixed effects Rascleinod
0.5.1. Estimation of the parameters under the fixed effects Raschdeb

In the Rasch model, by considering the latent trait as a séked parameters

(0., n = 1,..., N), the individuals values of the latent tréi{, n» = 1, ..., N cannot
be constistently estimated by classical technic [FIS 95].

Indeed, the Rasch model verifies the specific property ofcserfity of the un-
weighted score on the latent trait : this property signiftest,tconditionnally to the
scores,, = Z'j]:l Znj, the likelihood of thenth individual is independent of the latent
traitg,,.

LC’n(07L76/$n75n) = LCn(é/mnvsn) [7]

In maximizing the quantity

N
LC((s/mv 8) = H LCn((s/:Bna Sn)v (8]

n=1
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we obtain a consistent estimation of #heector of parameters.

The weighted maximum likelihood technics [FIS 95] allowsisistently estima-
ting thed,, s =0, ..., J parameters by maximizing :

N
LWC(OS/& x) = H Ln(esn,/& xn)9(0s,) [l

n=1

wherefs = (6o, ..., 60, ...,05)" and

B J exp(z — 0 )
g(@) =11 3 [10]
j=1 (1 + exp(z — 53))

0.5.2. Principle of Raschfit-Fast

The principle of Raschfit-Fast is globally the same than fasdhfit : at each step,
a kernel fits a Rasch model, and a new item is added to this kétthe new scale
has a good fit to a Rasch model. The mixed Rasch model is rejigca fixed effects
Rasch model, and the MMSRM is replaced by a specific modet toaih the follo-
wing consideration : if the set of items composed of the itefthe kernel and the
new item does not follow a Rasch model, we consider than th@oreses to the new
item are independent of the latent trait. The likelihoodbaised to these responses
is estimated by a logistic form (as in the Rasch model) but witly an unknow pa-
rameter characterizing the item in the linear composanicfwtan be interpreted as a
difficulty parameter).

At a stepk of the algorithm, le0 the index of the new item, thé, items of the
kernel are indexed fromto .J;.

0.5.3. A model where the new item is explained by the same latentttiaan the
kernel

If the new item is explained by the same latent trait than #radd, a Rasch model
can be used. At thkth step of the algorithm, the sco%fm is computed with the/y,
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items of the kernel and the new item.

The likelihood used to compute the Akaike Information Gide is in this case
similar to this one presented in the equation 9, and the nurobgarameters is

K™ =27, +3.

0.5.4. A model where the new item is not explained by the same lateait than the
kernel

The likelihood of the responses to thig items of the kernel of thath individual
is similar to this one presented in the equation 9 and theespanding log-likelihood
is noted(*) , at thekth step of the algorithm.

kerne

The likelihood of the response to the new item of tttk individual is estimated
by :

exp [Zno (—00)]

P(X,0 = = 11
(Xno = Tno/d0) T+ exp (<o) [11]
The estimation of thé, parameter can be obtained by maximizing :
N
lco(6o/xo) = log [ [ P(Xno = zno/d0) [12]
n=1

We easily obtaid, = — log ( to > wheret, = ZnNzl Zn0-

N—to

The log-likelihood of the model at thigh step of the algorithm is valuated by

1 =1 4+ 100(80/T0) [13]

~ "kernel

The number of parameters is in this ca’§§°) = 2J; + 2.
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0.5.5. Selection of the new item in the scale

The new itenD is selected in the scale at the end of the stetpfkﬂfk) < AIOS“).

0.6. A small set of simulations in order to compare Raschfit ath Raschfit-Fast
0.6.1. Parameters of the simulation study

To test the Raschfit procedure, Hardouin and Mesbah [HAR 84& hhealized si-
mulations based on a design proposed in [ABS 04]. Simula&tlate unidimensional
or bidimensional, and 2000 individuals are used. The patern@sed in the simula-
tions are :

— the model used to simulate the data,

— the structure of the data,

— the correlation between the two latent traits,

— the number of items in each dimension,

— the dicriminating power of the items of each dimension.

0.6.1.1. Models

The model used to simulate the data is a multidimensionaiteopart of the Five
Parameters Accelerating Model (5-PAM) which considers fiseameters for each
item : the difficulty ¢7), the discriminating power(;), the random response to the

item (7/°"), the maximal probability to respond to the itenj{), and an accelerating
coefficient €;) which is a coefficient of dissymmetry of the IRF. The IRF aétinodel
is :

P(an - xnj/en;(s;aa;vr‘/_g‘owv ;‘vagj)
cxp(1.7xn_7(ZqQ:1(a;q(?nq)fé;‘)) & [14]
L+exp(17(327 (af,0n0) =07 ) )

= ,yﬁ't)'w + (,y;fp _ 7§0'w)

with 0 < ygow <" <1,05, > 0and{; > 0. We name this model a M5-PAM (for
Multidimensional 5-PAM). If we have/é."“’ = 0,7;” = L and¢; = 1Vyj, the model
is a multidimensional couterpart of the 2 parameters lagisbdel (noted M2-PLM).

The parameterga;,, d;+) are computed in order to obtain Item Characteristics
Curves with the same maximal slop’fi#) and the same localisation of this maxi-
mal slope fﬁ) on theqth component of the latent trait whatever a given value for

J4q



10 SELECTION OF ITEMS FITTING A RASCH MODEL
(g, 05)-

In the simulations, we consider a bidimensional latent,teai@ = 2. The com-
ponent of the latent which influence the more the respondeetddm; is indexed by
g; and the other one by;.

The responses of a given itejncan be influenced only by,.. In this case,
a;jz; = 0. This case corresponds to a simple structure (SS) [J. 99].

But the responses of a given itefrcan be mainly influenced by one main com-
ponent of the latent trait and weakly by the othér<{ o;z << «j,). This case

corresponds to an approximate simple structure (ASS) JJ19%he simulations, we
useajg; = 0.2.

We consider four cases described in the table 1.

Casea,z= Structure(}°",~;7) &, Model

I 0 SS 0,1 1 MMSRM
I 02 ASS (0,1 1 M2-PLM
m o Ss (0.1,09) 2 M5-PAM

IV 02 ASS  (0.1,09) 2 M5-PAM

Tableau 1. Values of the parameters used in the simulations

We note that in the case | and Il, we havg, = a;4, Vg andd; = d;.

0.6.1.2. Simulation of the multidimensional latent trait

The two latent traits are simulated by a centered standzddizultinormal distri-
bution. The correlation coefficient between the two lateaits is notecp and can take
six different values 0.0, 0.2, 0.4, 0.6, 0.8 and1.0.

0.6.1.3. The number of items in the two dimensions

We use two different sizes for each dimension. These valigsespond to a mean
value of the number of items by dimension in Quality of Lifeegtionnaires{items)
and to a big value of this number4). Three designs are used items in each dimen-
sion, or7 items in one dimension aridl in the other. The used values of the difficulty
parameters in the simulations are chosen in the 2-PLM anadh dimension as the
l/(Jg+1), l=1,..., J, percentiles of a standardized centered gaussian distibut
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0.6.1.4. The discriminating powers of the items

The same valuey, is used for the discriminating power of all the items mainly
relied the same dimensign Three different values are used in the simulations for the
parameters,, ¢ = 1, ..., @ : alow value (.4), a medium value(.7) and a high value
(1.7). The six designs crossing two by two this three values agd.us

0.6.1.5. Description of the four main cases

Data simulated in the case | are equivalent to data simulaiidda MMSRM. In
this case, we can write the IRF of thith item :

exp (1.7xnj (atjg;Ong; — 5j))
1+ exp (1.7 (g, 0ng, — 6;))
exp xn(én ; N-)

oot ) .
1+ exp (anj — j)

P(Xnj = 2nj/0n;6j, ;) =

<

1

With 6,q, = 1.7aq,0,, @ndd; = 1.75;. This expression is equivalent to this one

present in the equation (3),, = (0,1, én?)/ is in this case distributed as a centered
multinormal distribution with a covariance matrix

& (1.701)? 1.7%ai00p
X = ( L.7%a1a0p  (1.7)? [16]

This case is interesting when we search to study the reduthe grocedure when
the model underlying the data is a MMSRM, that is to say theehaded by the pro-
cedure.

The case Il allows knowning the behavior of the proceduresnithe IRF of the
items have the same general form than in the MMSRM but whesttiieture is less
particular (the SS is a very rare structure in practice, sA8S is a likelier structure
of real data). These cases allow seeing if the introducti@inor latent trait stron-
gly affects in practice the notion of sufficiency of the scorethe (main) latent trait.

The cases Ill and IV allow studying the results of the proceduhen the IRF are
different of the supposed IRF. The results are more diffitulanalyse because the
underlying notion of sufficiency of the score on the lateatttis not verified in this
model. These simulations considers the cases where thienamisionality is the main
link between the items. latent trait.
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0.6.1.6. The number of simulations

By crossing these five factors, we obta&if0 designs. Each of them is simulated
one time.

0.6.2. Results and time of computing

0.6.2.1. Tested procedures

The simulated data are been treated by four procedures :
— the Raschfit procedure,
— the Raschfit-Fast procedure,

— a Mokken scale procedure (MSP) [HEM 95] which builds scafegeems which
verify the properties of the IRT unless searching the fit taametric IRM,

— a Hierarchical Cluster Analysis on conditional measufgsaximity (HCACC-
PROX), wich clusters together the items having the great@ximity (based on the
conditional covariance between the items).

0.6.2.2. MSP

MSP is a procedure described in [HEM 95]. This procedurecbetar build scales
which verifies a Mokken scale, that is to say a scale verifyhegy fundamental as-
sumptions of the IRT (unidimensionality, local independgrand monotonicity).

The Mokken scale are non parametric models, and necessitéitea threshold
(c) as the minimum acceptable value for the used indices (Tkihger H indices
[LOE 48]). The authors of this procedure suggest to chaoze0.3, this minimum
value is used in the simulations.

0.6.2.3. HCACCPROX

HCACCPROX is defined in [ROU 98]. This method is based on thessaethods
than the classical HCA : a proximity matrix is defined and ahestep, the two closer
elements among all these ones defined at the preecedingretejustered together,
until obtaining only one cluster. The authors defined, infie of the IRT, three
specific proximity matrix based a weighted sum of the covengacorrelation or odds-
ration computed for each value of the score. They shows withlations that the use
of this method gives better results than classical measfigeximity with IRT items.
The DETECT indice is used to chose the number of clustersofst(The partition
which presents the minimal value for this indice is chosém}the simulations, the
distance based on the conditional covariances betweeneims iand the WPGMA
method of aggregation are used.
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Number Time of computing in seconds
Procedure of items Average Standard error Minimum Maximum
Raschfit 77 18190 3384 13740 39540
7:;14 38829 9291 23460 64800
Raschfit-Fast 77 320 110 120 720
147 1216 530 240 2640
MSP 77 20 5 5 187
147 89 18 8 382
HCA/CCPROX 7;7 89 5 79 123
147 353 81 287 905

Tableau 2. Average, minimum and maximum time of computing for one
simulation for each procedure

0.6.2.4. Clustering of the results

Let a major error of classement defined as two items which baea simulated
from two disctinct dimensions and which are classified thgetWhen we simulate
two dimensions with a perfect correlation € 1 : unidimensional case), a major er-
ror of classement is a classement which allows findind thgireal dimension of each
item.

Each result is affected to a class among these five ones :
— Class 1 : The true classification of the items is found,

— Class 2 : Less than 2 items (for dimensions with= 7) or 3 items (for dimen-
sions withJ, = 14) are not classified in the two main dimensions,

— Class 3 : The true classification of the items is not foundthete is no major
error of classement,
— Class 4 : There is one or several major error(s) of classemen

— Class 5 : Unspecified results : at least 2 items (for dimessiath J, = 7) or 3
items (for dimensions witl, = 14) are unselected by the procedure [Only for MSP].

0.6.2.5. Time of computing

The average, the minimum and the maximum times of computingdch proce-
dure are presented in the table 2. The values depends of ithieemwf used items. The
used computer is cadenced at 950MHz with 512Mo of RAM.

The table 2 shows that Raschfit, in its original version, i®g/Yong process and
is unadapted in practice (in average, 5 hours to run the groeewith seven items
in each dimension and 11 hours to run it with seven and foarteens in the two
dimensions). Compared to Raschfit, Raschfit- Fast reduegintie of computing by
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a factor 60 for 7 items in each dimension, and by a factor 37 famd 14 items in the
two dimensions.

0.6.2.6. Results of the data simulated by a MMSRM (case |)

The results are influenced by two main factors : the cortatoefficient between
the two components of the latent traits and the fact that iberichinating powers of
the items in the two dimensions are equal & a-) or not.

Concerning the correlation coefficient between the two camept of the latent
traits, we consider 3 main cases :

— the correlation is lowd < 0.4),
— the correlation is highi(6 < p < 0.8),
— the two simulated latent traits are counfoupd 1).

The table 3 presents the results of the four tested procedued! these cases.

Equal discriminating power | Different discriminating power

among the two dimensions| among the two dimensions

Procedure Results | p<0406<p<08 p=1.0/ p<0406<p<08 p=10
Number of simulations | 18 12 6 27 18 9
Raschfit good 14(78%) 7(58%) 4(67%p4(89%) 13(72%) 0
bad 3(17%) 5(42%) D) 2(7%) 4(22%) 7(78%)
Raschfit good 15(83%) 0 6(100%4)26(96%) 15(83%) 1(11%)
Fast bad 3(17%) 12(100%) 0 1(4%) 3(17%) 3(33%)
HCA/CCPROX good 15(83%) 8(67%) 6(100%26(96%) 10(56%) 0
bad 1(6%) 3(25%) 0 1(4%) 2(11%) 1(11%)

MSP good 12(67%) 3(25%) 4(67%) 8(30%) 0 4(44%)
(¢=10.3) bad 0 6(50%) 0 0 9(50%) 0
unspecified 6(33%) 2(17%) 2(33%)L8(67%) 9(50%) 5(56%)

Tableau 3. Results with data simulated by a MMSRM

When the discriminating powers used in the simulations agesttime in the two
sets of items, results are good when the correlation caogfitids low < 0.4),
and continue to be correct when it is mediuth6( < p < 0.8) for Raschfit and
HCA/CCPROX.

When the latent trait underlying the two sets of the itemséssiime 4 = 1), the
results are good for Raschfit and Raschfit-Fast if the twoafdétems have the same
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Procedure Results | p<0.406<p<08 p=10
Number of simulations | 45 30 15
Raschfit good 27(60%) 12(40%) 4(27%)
bad 8(18%) 18(60%) 2(13%)
Raschfit-Fast  good 24(53%) 8(27%) 8(53%)
bad 21(47%) 22(73%) 1(7%)
HCA/CCPROX good 29(64%) 9(30%) 0
bad 9(20%) 10(33%) 0
MSP good 6(13%) 2(7%) 2(13%)
(c=0.3) bad 0 2(7%) 0
unspecified39(87%) 26(87%) 8(53%)

Tableau 4. Results with data simulated by a Multidimensional 2PLM

discriminating powers (and so, if the global set of items barconsidered as a only
one Rasch scale), and if the two sets of items have differisntichinating powers,
these two procedure tend to consider that the latent traitbeameasured with two
Rasch scales. HCA/CCPROX seems to be sensible to the disating powers of the
items, but produces few errors. MSP have success ratessea thses similar to these
ones obtained with a lower value of the correlation coefficie

0.6.2.7. Results of the data simulated by a multidimensional 2PLN&d§

When the data are simulated by a multidimensional 2PLM witA88 (see table
4), Raschfit, Raschfit-Fast and HCA/CCPROX have similar ohticcess when the
correlation coefficient is different tb: a high rate (53% to 64%) when the correlation
is low, and a medium rate (27% to 40%) when the correlatioigi)hMSP have poor
rate of success and an important rate of unspecified reSTRé)(

When the two components of the latent traits are counfouriRlashfit-Fast is the
procedure which produces the best rate of success (53%H@AUCCPROX has the
advantage to not produce bad results.

0.6.2.8. Results of the data simulated by a multidimensional 5PAMéSEll and 1V)

The table 5 presents the results obtained with data sintblgtea multidimensio-
nal 5PAM.

When data are simulated from a Multidimensional 5PAM, resaite comparable
to these ones obtained with the multidimensional 2-PLM witbre important rate
of bad results for Raschfit, Raschfit-Fast and HCA/CCPROX. rete of unspecified
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Procedure Results | p<0406<p<08 p=1.0
Number of simulations | 90 60 30
Raschfit good 49(54%) 23(38%) 13(43%)
bad 35(39%)  35(58%) 6(20%)
Raschfit-Fast  good 59(66%) 6(10%) 12(40%)
bad 31(34%)  54(90%) 0
HCAICCPROX good 45(50%) 17(28%) 0
bad 24(27%) 28(47%)  2(7%)
MSP good 16(18%) 0 17(57%)
(c=0.3) bad 27(30%)  45(75%) 0

unspecified44(49%) 14(23%) 4(13%)

Tableau 5. Results with data simulated by a Multidimensional 5PAM

results for MSP is lower but unspecified results are "becdrhad results. The rela-
tively good results obtained with Raschfit and a model veffeint of the MMSRM
can be imputed to the fact that, in the simulations, the patara are fixed in order
to obtain Items Characteritics Curves (ICC) with the santation of the maximum
slope and the same value of the maximum slop, so this modeiaaenought far of
the MMSRM to create a large disturbance of the algorithm.

0.7. Alarge set of simulations in order to compare Raschfit-&st, MSP and HCA/CCPROX

Raschtest-Fast seems to give similar results to Raschfithbuslowness of Ra-
schfit avoids to realize a large set of simulations with thizcpdure. In this part, we
propose a simulations study with a large set of simulatithepmpare Raschfit-Fast,
MSP and HCA/CCPROX. The simulated cases concerns unidioreiscale (are the
procedure able to detect a unidimensional scale ? - cased¥)enturbance create by
the add of a perturbant item (are the procedures able totdebed item ? - cases B-E).

0.7.1. Parameters of the simulations

We simulate one or bi-dimensional data.

We define four cases indexed from A to E. In each case, thelatore between
the two components of the latent trait is fixgd=€ 0.0 for B, p = 0.2 for C, p = 0.4
for D, p = 0.6 for E). The case A is the unidimensional case : none item isdéd
the second component of the latent trait.
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In each case, 7 items are simulated relatively to the firstpamant of the latent
trait, and one item is simulated relatively to the secondpoment (except in the case
A where there is none such item). The aim is to determine iptheedures can detect
one bad item in a set of items (in the case A, the aim is to ske ibtocedures detects
bad items in a set of unidimensional items).

We define too four scenarii, numbered | to 1V, following theegage of the discri-
minating power of the itemsy,, = .5, tta;; = 1, oy, = 2, @ndp,,, = 3. The
discriminating power of each item is randomly defined amomgmnal distribution
of standard error2.

The difficulty of the items are taken as the percentiles okthadardized gaussian
distribution. The latent trait is simulated by a multinotroantered distribution, with
the identity matrix as covariance matrix.

800 replications are simulated of each case.

Case/ Raschfit-Fast MSP HCA/CCPROX
ScenarioCorrect Medium BagCorrect Medium Bad Unspecifie@ood Medium Bad
Al 781 19 - 0 0 - 800 0 800 -

I 800 0 -| 26 221 - 553 0 800 -
1] 800 0 - | 800 0 - 0 800 0 -
\Y 800 0 - | 800 0 - 0 800 0 -
B I 625 0 175 0 0 0 800 0 775 25
I 800 0 0| 23 73 0 704 2 789 9
Il 800 0 0| 800 0 0 0 799 1 0
v 800 0 0| 800 0 0 0 800 0 0
Cl 562 0 238 0 0 0 800 0 767 33
1] 799 0 1 29 97 0 674 1 786 13
i 800 0 0| 800 0 0 0 800 0 0
v 800 0 0| 800 0 0 0 800 0 0
DI 469 0 331 O 0 0 800 0 755 45
I 712 0 88| 22 107 0 671 0 770 30
1] 800 0 0| 800 0 0 0 795 5 0
\Y 800 0 0| 780 0 20 0 800 0 0
E I 259 0 541 O 0 0 800 0 733 67
I 186 0 614 30 63 0 0 0 753 47
Il 187 0 613 495 0 305 0 767 32 1
v 702 0 98 1 0 799 0 800 0 0

Tableau 6. Results of the simulations concerning the comparison of
Raschfit-Fast, MSP and HCA/CCPROX
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0.7.2. Discussion

Raschfit-Fast allows obtaining good results as soon as tinelation between the
two component of the latent trait is low, and/or the discriaiing power of the items
is high. When the set of items is unidimensional, Raschfit-Béews detecting that
there is no perturbant item. Indeed, the quality of the tessifongly decreases with
the increasing of the correlation between the two companeithe latent trait.

MSP produces full of unspecified results, notably when tlerininating powers
of the items is low (inferior or equal to 1). In the others cagtke results are correct,
except if the discriminating powers of the items are too Hglperior to 1) and if the
correlation between the two components of the latent trait@o correlated (coeffi-
cient superior to 0.4).

HCA/CCPROX produces good results when the discriminatowggss of the items
are high (superior to 1) and else, medium results.

Raschfit-Fast, in these cases where the real model is clode dIMSRM, the
more powerfull procedures among these three ones, notadidy the conditions are
less favourable : high correlation between the componéitiseolatent traits and/or
low discriminating power of the items.

0.8. The Stata module "Raschfit"

We propose a Stata module named -raschfit- to realize thehRgzocedure. By
default, this module run Raschfit-Fast. The Stata modugehfé- can be downloaded
from the FreelRT Project at http ://freeirt.free.fr.

The syntax of -raschfit- is simple. The user indicates theesaofi the used items.
By default, MSP is run under the items to order them among ativegorder, and the
two first items selected by MSP are considered as the inidiadéd of the scale. The
others items are ordered with MSP from the last item seldzyedSP to the first one
(except the kernel).

It is possible to modify the method to order the items with"itemsorder" option
which can be "msp" (by default), "mspinv" (the kernel is s&del from the same way
than by default, but the others items are taken in the invender) and "order" which
orders the items in the same order than this one defined bystre u
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The number of sub-scales to build is defined by the "nbscalpgdn (1 by de-
fault). The size of the kernel of the first sub-scale can benddfby the "kernel" option
(2 by default). Last, it is possible to run the original versbf Raschfit in adding the
"nofast" option.

With the syntax of the Stata manual, the syntax of the -rasehbdule is :

. raschfit varlist [, kernel(#) nbscaleg#) itemsorder(keyword nofasf

0.9. Conclusion

A new procedure named Raschfit had been proposed in a preggeater It al-
lows selecting the items which fit a Rasch model. This proseiibased on the fit
of the data to a multidimensional Iltem Response Model, atstd on the correlations
between items (as in the factor analysis) or on the propedifi¢he items (as in the
Mokken Scales Procedure - MSP).

Raschfit is more performant than the existing procedurestwdiie based on uni-
dimensionality of the items, especially when the multidisienal model underlying
the data is close of this one used in the procedure. The mawmbdick of Raschfit is
the time of computing (until several hours, even the numibéems is small). A new
version of this procedure, named Raschfit-Fast, is propiogdds paper. Raschfit-Fast
allows estimating more fastly the likelihood of the modelsd considerably reduces
the time of computing, even if already existing proceduldSP for example) still are
faster. This adaptation of Raschfit give similar results parad to the former version,
if the latent traits underlying to each set of items have adowelation.

This is encouraging results for this type of procedure, hasethe fit to IRM, even
new improvements are necessary to reduce the rates of hdtsres
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